Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(12): 2256-2264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855126

RESUMO

Blood pressure management involves antihypertensive therapies blocking the renin-angiotensin system (RAS). Yet, it might be inadequate due to poor patient adherence or the so-called RAS escape phenomenon, elicited by the compensatory renin elevation upon RAS blockade. Recently, evidence points toward targeting hepatic AGT (angiotensinogen) as a novel approach to block the RAS pathway that could circumvent the RAS escape phenomenon. Removing AGT, from which all angiotensins originate, should prevent further angiotensin generation, even when renin rises. Furthermore, by making use of a trivalent N-acetylgalactosamine ligand-conjugated small interfering RNA that specifically targets the degradation of hepatocyte-produced mRNAs in a highly potent and specific manner, it may be possible in the future to manage hypertension with therapy that is administered 1 to 2× per year, thereby supporting medication adherence. This review summarizes all current findings on AGT small interfering RNA in preclinical models, making a comparison versus classical RAS blockade with either ACE (angiotensin-converting enzyme) inhibitors or AT1 (angiotensin II type 1) receptor antagonists and AGT suppression with antisense oligonucleotides. It ends with discussing the first-in-human study with AGT small interfering RNA.


Assuntos
Angiotensinogênio , Hipertensão , Humanos , Acetilgalactosamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Pressão Sanguínea , Hipertensão/terapia , Hipertensão/tratamento farmacológico , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia , RNA Interferente Pequeno/farmacologia
2.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546995

RESUMO

Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.

3.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638886

RESUMO

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , Acetilgalactosamina
4.
Nat Commun ; 14(1): 1970, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031257

RESUMO

Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.


Assuntos
Dependovirus , Terapia Genética , Interferência de RNA , Dependovirus/genética , Dependovirus/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes , RNA de Cadeia Dupla , Vetores Genéticos/genética
5.
Br J Pharmacol ; 180(1): 80-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36106615

RESUMO

BACKGROUND AND PURPOSE: Small interfering RNA (siRNA) targeting liver angiotensinogen lowers blood pressure, but its effects in hypertensive diabetes are unknown. EXPERIMENTAL APPROACH: To address this, TGR (mRen2)27 rats (angiotensin II-dependent hypertension model) were made diabetic with streptozotocin over 18 weeks and treated with either vehicle, angiotensinogen siRNA, the AT1 antagonist valsartan, the ACE inhibitor captopril, valsartan + siRNA or valsartan + captopril for the final 3 weeks. Mean arterial pressure (MAP) was measured via radiotelemetry. KEY RESULTS: MAP before treatment was 153 ± 2 mmHg. Diabetes resulted in albuminuria, accompanied by glomerulosclerosis and podocyte effacement, without a change in glomerular filtration rate. All treatments lowered MAP and cardiac hypertrophy, and the largest drop in MAP was observed with siRNA + valsartan. Treatment with siRNA lowered circulating angiotensinogen by >99%, and the lowest circulating angiotensin II and aldosterone levels occurred in the dual treatment groups. Angiotensinogen siRNA did not affect renal angiotensinogen mRNA expression, confirming its liver-specificity. Furthermore, only siRNA with or without valsartan lowered renal angiotensin I. All treatments lowered renal angiotensin II and the reduction was largest (>95%) in the siRNA + valsartan group. All treatments identically lowered albuminuria, whereas only siRNA with or without valsartan restored podocyte foot processes and reduced glomerulosclerosis. CONCLUSION AND IMPLICATIONS: Angiotensinogen siRNA exerts renoprotection in diabetic TGR (mRen2)27 rats and this relies, at least in part, on the suppression of renal angiotensin II formation from liver-derived angiotensinogen. Clinical trials should now address whether this is also beneficial in human diabetic kidney disease.


Assuntos
Angiotensina II , Diabetes Mellitus Experimental , Hipertensão , Nefropatias , RNA Interferente Pequeno , Animais , Humanos , Ratos , Albuminúria , Angiotensina II/efeitos dos fármacos , Angiotensina II/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipertensão/tratamento farmacológico , Fígado/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , Valsartana/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/prevenção & controle , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico
6.
Org Lett ; 24(33): 6111-6116, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35973215

RESUMO

We report a simple, postsynthetic strategy for synthesis of oligonucleotides containing 2,6-diaminopurine nucleotides and 2-aminoadenine conjugates using 2-fluoro-6-amino-adenosine. The strategy allows introduction of 2,6-diaminopurine and other 2-amino group-containing ligands. The strongly electronegative 2-fluoro deactivates 6-NH2 obviating the need for any protecting group on adenine, and simple aromatic nucleophilic substitution of fluorine makes reaction with aqueous NH3 or R-NH2 feasible at the 2-position.


Assuntos
2-Aminopurina , Oligonucleotídeos , 2-Aminopurina/análogos & derivados , Adenina
7.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654979

RESUMO

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
8.
Org Lett ; 24(25): 4496-4501, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715221

RESUMO

An aminooxy click chemistry (AOCC) strategy was used to synthesize nucleoside building blocks for incorporation during solid-support synthesis of oligonucleotides to enable bis-homo and bis-hetero conjugation of various biologically relevant ligands. The bis-homo aminooxy conjugation leads to bivalent ligand presentation, whereas the bis-hetero conjugation allows the placement of different ligands with either the same or different chemical linkages. This facile synthetic methodology allows introduction of two different ligands with different biological functions simultaneously.


Assuntos
Química Click , Ácidos Nucleicos , Ligantes , Estrutura Molecular , Oligonucleotídeos
9.
Drug Metab Dispos ; 50(6): 781-797, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34154993

RESUMO

Conjugation of oligonucleotide therapeutics, including small interfering RNAs (siRNAs) or antisense oligonucleotides, to N-acetylgalactosamine (GalNAc) ligands has become the primary strategy for hepatocyte-targeted delivery, and with the recent approvals of GIVLAARI (givosiran) for the treatment of acute hepatic porphyria, OXLUMO (lumasiran) for the treatment of primary hyperoxaluria, and Leqvio (inclisiran) for the treatment of hypercholesterolemia, the technology has been well validated clinically. Although much knowledge has been gained over decades of development, there is a paucity of published literature on the drug metabolism and pharmacokinetic properties of GalNAc-siRNA. With this in mind, the goals of this minireview are to provide an aggregate analysis of these nonclinical absorption, distribution, metabolism, and excretion (ADME) data to build confidence on the translation of these properties to human. Upon subcutaneous administration, GalNAc-conjugated siRNAs are quickly distributed to the liver, resulting in plasma pharmacokinetic (PK) properties that reflect rapid elimination through asialoglycoprotein receptor-mediated uptake from circulation into hepatocytes. These studies confirm that liver PK, including half-life and, most importantly, siRNA levels in RNA-induced silencing complex in hepatocytes, are better predictors of pharmacodynamics (PD) than plasma PK. Several in vitro and in vivo nonclinical studies were conducted to characterize the ADME properties of GalNAc-conjugated siRNAs. These studies demonstrate that the PK/PD and ADME properties of GalNAc-conjugated siRNAs are highly conserved across species, are largely predictable, and can be accurately scaled to human, allowing us to identify efficacious and safe clinical dosing regimens in the absence of human liver PK profiles. SIGNIFICANCE STATEMENT: Several nonclinical ADME studies have been conducted in order to provide a comprehensive overview of the disposition and elimination of GalNAc-conjugated siRNAs and the pharmacokinetic/pharmacodynamic translation between species. These studies demonstrate that the ADME properties of GalNAc-conjugated siRNAs are well correlated and predictable across species, building confidence in the ability to extrapolate to human.


Assuntos
Acetilgalactosamina , Porfirias Hepáticas , Acetilgalactosamina/farmacocinética , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Humanos , Porfirias Hepáticas/metabolismo , RNA Interferente Pequeno/genética
10.
Nucleic Acids Res ; 50(3): 1221-1240, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34268578

RESUMO

A critical challenge for the successful development of RNA interference-based therapeutics therapeutics has been the enhancement of their in vivo metabolic stability. In therapeutically relevant, fully chemically modified small interfering RNAs (siRNAs), modification of the two terminal phosphodiester linkages in each strand of the siRNA duplex with phosphorothioate (PS) is generally sufficient to protect against exonuclease degradation in vivo. Since PS linkages are chiral, we systematically studied the properties of siRNAs containing single chiral PS linkages at each strand terminus. We report an efficient and simple method to introduce chiral PS linkages and demonstrate that Rp diastereomers at the 5' end and Sp diastereomers at the 3' end of the antisense siRNA strand improved pharmacokinetic and pharmacodynamic properties in a mouse model. In silico modeling studies provide mechanistic insights into how the Rp isomer at the 5' end and Sp isomer at the 3' end of the antisense siRNA enhance Argonaute 2 (Ago2) loading and metabolic stability of siRNAs in a concerted manner.


Assuntos
Organofosfatos , RNA Interferente Pequeno , Animais , Isomerismo , Camundongos , Interferência de RNA , Estabilidade de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/metabolismo
11.
Nucleic Acids Res ; 49(18): 10250-10264, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508350

RESUMO

In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using 'click' chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circular RNA mimics. We evaluated various sciRNA designs in vitro and in vivo. We observed improved metabolic stability of the sense strand upon circularization and off-target effects were eliminated. The 5'-(E)-vinylphosphonate modification of the antisense strand resulted in GalNAc-sciRNAs that are potent in vivo at therapeutically relevant doses. Physicochemical studies and NMR-based structural analysis, together with molecular modeling studies, shed light on the interactions of this novel class of siRNAs, which have a partial duplex character, with the RNAi machinery.


Assuntos
Inativação Gênica , Interferência de RNA , RNA Circular , RNA Interferente Pequeno , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
13.
Nucleic Acids Res ; 49(5): 2435-2449, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577685

RESUMO

We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.


Assuntos
Nucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA Polimerase gama/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Pré-Albumina/genética , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Uridina/análogos & derivados
14.
Clin Sci (Lond) ; 135(2): 259-274, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33404046

RESUMO

Brain renin-angiotensin system (RAS) activation is thought to mediate deoxycorticosterone acetate (DOCA)-salt hypertension, an animal model for human primary hyperaldosteronism. Here, we determined whether brainstem angiotensin II is generated from locally synthesized angiotensinogen and mediates DOCA-salt hypertension. To this end, chronic DOCA-salt-hypertensive rats were treated with liver-directed siRNA targeted to angiotensinogen, the angiotensin II type 1 receptor antagonist valsartan, or the mineralocorticoid receptor antagonist spironolactone (n = 6-8/group). We quantified circulating angiotensinogen and renin by enzyme-kinetic assay, tissue angiotensinogen by Western blotting, and angiotensin metabolites by LC-MS/MS. In rats without DOCA-salt, circulating angiotensin II was detected in all rats, whereas brainstem angiotensin II was detected in 5 out of 7 rats. DOCA-salt increased mean arterial pressure by 19 ± 1 mmHg and suppressed circulating renin and angiotensin II by >90%, while brainstem angiotensin II became undetectable in 5 out of 7 rats (<6 fmol/g). Gene silencing of liver angiotensinogen using siRNA lowered circulating angiotensinogen by 97 ± 0.3%, and made brainstem angiotensin II undetectable in all rats (P<0.05 vs. non-DOCA-salt), although brainstem angiotensinogen remained intact. As expected for this model, neither siRNA nor valsartan attenuated the hypertensive response to DOCA-salt, whereas spironolactone normalized blood pressure and restored brain angiotensin II together with circulating renin and angiotensin II. In conclusion, despite local synthesis of angiotensinogen in the brain, brain angiotensin II depended on circulating angiotensinogen. That DOCA-salt suppressed circulating and brain angiotensin II in parallel, while spironolactone simultaneously increased brain angiotensin II and lowered blood pressure, indicates that DOCA-salt hypertension is not mediated by brain RAS activation.


Assuntos
Angiotensina II/metabolismo , Hipertensão/fisiopatologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensinogênio/sangue , Animais , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Acetato de Desoxicorticosterona/administração & dosagem , Hipertensão/induzido quimicamente , Masculino , Ratos Sprague-Dawley , Renina/sangue , Cloreto de Sódio na Dieta/administração & dosagem , Valsartana/farmacologia
15.
Nucleic Acids Res ; 48(18): 10101-10124, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32990754

RESUMO

Various chemical modifications have been identified that enhance potency of small interfering RNAs (siRNAs) and that reduce off-target effects, immune stimulation, and toxicities of metabolites of these therapeutic agents. We previously described 5'-C-methyl pyrimidine nucleotides also modified at the 2' position of the sugar. Here, we describe the synthesis of 2'-position unmodified 5'-(R)- and 5'-(S)-C-methyl guanosine and evaluation of these nucleotides in the context of siRNA. The (R) isomer provided protection from 5' exonuclease and the (S) isomer provided protection from 3' exonuclease in the context of a terminally modified oligonucleotide. siRNA potency was maintained when these modifications were incorporated at the tested positions of sense and antisense strands. Moreover, the corresponding 5' triphosphates were not substrates for mitochondrial DNA polymerase. Models generated based on crystal structures of 5' and 3' exonuclease oligonucleotide complexes with 5'-(R)- and 5'-(S)-C-methyl substituents attached to the 5'- and 3'-terminal nucleotides, respectively, provided insight into the origins of the observed protections. Structural properties of 5'-(R)-C-methyl guanosine incorporated into an RNA octamer were analysed by X-ray crystallography, and the structure explains the loss in duplex thermal stability for the (R) isomer compared with the (S) isomer. Finally, the effect of 5'-C-methylation on endoribonuclease activity has been explained.


Assuntos
Guanosina/análogos & derivados , RNA Interferente Pequeno , Isomerismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/química
16.
Nucleic Acids Res ; 48(21): 11827-11844, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32808038

RESUMO

One hallmark of trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNAs is the remarkable durability of silencing that can persist for months in preclinical species and humans. Here, we investigated the underlying biology supporting this extended duration of pharmacological activity. We found that siRNA accumulation and stability in acidic intracellular compartments is critical for long-term activity. We show that functional siRNA can be liberated from these compartments and loaded into newly generated Argonaute 2 protein complexes weeks after dosing, enabling continuous RNAi activity over time. Identical siRNAs delivered in lipid nanoparticles or as GalNAc conjugates were dose-adjusted to achieve similar knockdown, but only GalNAc-siRNAs supported an extended duration of activity, illustrating the importance of receptor-mediated siRNA trafficking in the process. Taken together, we provide several lines of evidence that acidic intracellular compartments serve as a long-term depot for GalNAc-siRNA conjugates and are the major contributor to the extended duration of activity observed in vivo.


Assuntos
Acetilgalactosamina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Portadores de Fármacos , Inativação Gênica , Pré-Albumina/genética , RNA Interferente Pequeno/metabolismo , Acetilgalactosamina/química , Animais , Proteínas Argonautas/genética , Receptor de Asialoglicoproteína/genética , Transporte Biológico , Estabilidade de Medicamentos , Feminino , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/metabolismo , RNA Interferente Pequeno/genética , Fatores de Tempo
17.
Nucleic Acids Res ; 48(8): 4028-4040, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170309

RESUMO

In this report, we investigated the hexopyranose chemical modification Altriol Nucleic Acid (ANA) within small interfering RNA (siRNA) duplexes that were otherwise fully modified with the 2'-deoxy-2'-fluoro and 2'-O-methyl pentofuranose chemical modifications. The siRNAs were designed to silence the transthyretin (Ttr) gene and were conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Sense and antisense strands of the parent duplex were synthesized with single ANA residues at each position on the strand, and the resulting siRNAs were evaluated for their ability to inhibit Ttr mRNA expression in vitro. Although ANA residues were detrimental at the 5' end of the antisense strand, the siRNAs with ANA at position 6 or 7 in the seed region had activity comparable to the parent. The siRNA with ANA at position 7 in the seed region was active in a mouse model. An Oligonucleotide with ANA at the 5' end was more stable in the presence of 5'-exonuclease than an oligonucleotide of the same sequence and chemical composition without the ANA modification. Modeling studies provide insight into the origins of regiospecific changes in potency of siRNAs and the increased protection against 5'-exonuclease degradation afforded by the ANA modification.


Assuntos
Acetilgalactosamina/química , Carboidratos/química , Interferência de RNA , RNA Interferente Pequeno/química , Álcoois Açúcares/química , Animais , Células COS , Chlorocebus aethiops , Exorribonucleases , Hepatócitos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Pré-Albumina/genética , Ribonucleotídeos/química
18.
Bioanalysis ; 11(21): 1955-1965, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31829055

RESUMO

Aim: A novel single-stranded deaminated oligonucleotide metabolite resulting from a REVERSIR™ oligonucleotide was discovered and identified in monkey liver after subcutaneous administration. Results & methodology: REVERSIR-A and its metabolites were extracted from biological matrices by solid phase extraction and analyzed using LC coupled with high-resolution MS under negative ionization mode. A novel 9-mer metabolite of REVERSIR-A, resulting from deamination of the 3' terminal 2'-O-methyl-adenosine nucleotide to 2'-O-methyl-inosine, was discovered at significant levels in monkey liver. The metabolite's identity was confirmed by LC-MS/MS. Conclusion: This report describes the first observation of a long-chain deaminated metabolite of a single-stranded REVERSIR oligonucleotide in vivo in monkey liver.


Assuntos
Espectrometria de Massas/métodos , Oligonucleotídeos/metabolismo , Animais , Desaminação , Inosina/metabolismo , Fígado/metabolismo , Macaca fascicularis
19.
Bioanalysis ; 11(21): 1967-1980, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31829056

RESUMO

Aim: Advancements in RNA interference therapeutics have triggered development of improved bioanalytical methods for oligonucleotide metabolite profiling and high-throughput quantification in biological matrices. Results & methodology: HPLC coupled with high-resolution mass spectrometry (LC-HRMS) methods were developed to investigate the metabolism of a REVERSIR™ molecule in vivo. Plasma and tissue samples were extracted using solid-phase extraction followed by LC-HRMS analysis for metabolite profiling and quantification. The method was qualified from 10 to 5000 ng/ml (plasma) and 100 to 50000 ng/g (liver and kidney). In rat liver, intra and interday accuracy ranged from 80.9 to 118.5% and 88.4 to 111.9%, respectively, with acceptable precision (<20% CV). Conclusion: The LC-HRMS method can be applied for metabolite profiling and quantification of oligonucleotides in biological matrices.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Oligonucleotídeos/metabolismo , Animais , Sequência de Bases , Cromatografia Líquida , Fígado/metabolismo , Macaca fascicularis , Oligonucleotídeos/sangue , Oligonucleotídeos/genética , Oligonucleotídeos/urina
20.
Hypertension ; 73(6): 1249-1257, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31030610

RESUMO

Small interfering RNAs (siRNAs) targeting hepatic angiotensinogen ( Agt) may provide long-lasting antihypertensive effects, but the optimal approach remains unclear. Here, we assessed the efficacy of a novel AGT siRNA in spontaneously hypertensive rats. Rats were treated with vehicle, siRNA (10 mg/kg fortnightly; subcutaneous), valsartan (31 mg/kg per day; oral), captopril (100 mg/kg per day; oral), valsartan+siRNA, or captopril+valsartan for 4 weeks (all groups, n=8). Mean arterial pressure (recorded via radiotelemetry) was lowered the most by valsartan+siRNA (-68±4 mm Hg), followed by captopril+valsartan (-54±4 mm Hg), captopril (-23±2 mm Hg), siRNA (-14±2 mm Hg), and valsartan (-10±2 mm Hg). siRNA and captopril monotherapies improved cardiac hypertrophy equally, but less than the dual therapies, which also lowered NT-proBNP (N-terminal pro-B-type natriuretic peptide). Glomerular filtration rate, urinary NGAL (neutrophil gelatinase-associated lipocalin), and albuminuria were unaffected by treatment. siRNA lowered circulating AGT by 97.9±1.0%, and by 99.8±0.1% in combination with valsartan. Although siRNA greatly reduced renal Ang (angiotensin) I, only valsartan+siRNA suppressed circulating and renal Ang II. This coincided with decreased renal sodium hydrogen exchanger type 3 and phosphorylated sodium chloride cotransporter abundances. Renin and plasma K+ increased with every treatment, but especially during valsartan+siRNA; no effects on aldosterone were observed. Collectively, these data indicate that Ang II elimination requires >99% suppression of circulating AGT. Maximal blockade of the renin-angiotensin system, achieved by valsartan+siRNA, yielded the greatest reduction in blood pressure and cardiac hypertrophy, whereas AGT lowering alone was as effective as conventional renin-angiotensin system inhibitors. Given its stable and sustained efficacy, lasting weeks, RNA interference may offer a unique approach to improving therapy adherence and treating hypertension.


Assuntos
Angiotensinogênio/genética , Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , Hipertensão/tratamento farmacológico , Fígado/metabolismo , RNA Interferente Pequeno/administração & dosagem , Angiotensinogênio/biossíntese , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/genética , Hipertensão/metabolismo , Injeções Subcutâneas , Masculino , RNA/genética , RNA Interferente Pequeno/farmacocinética , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...